Promiscuity of a modular polyketide synthase towards natural and non-natural extender units.

نویسندگان

  • Irina Koryakina
  • John B McArthur
  • Matthew M Draelos
  • Gavin J Williams
چکیده

Combinatorial biosynthesis approaches that involve modular type I polyketide synthases (PKSs) are proven strategies for the synthesis of polyketides. In general however, such strategies are usually limited in scope and utility due to the restricted substrate specificity of polyketide biosynthetic machinery. Herein, a panel of chemo-enzymatically synthesized acyl-CoA's was used to probe the promiscuity of a polyketide synthase. Promiscuity determinants were dissected, revealing that the KS is remarkably tolerant to a diverse array of extender units, while the AT likely discriminates between extender units that are native to the producing organism. Our data provides a clear blueprint for future enzyme engineering efforts, and sets the stage for harnessing extender unit promiscuity by employing various in vivo polyketide diversification strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A crotonyl-CoA reductase-carboxylase independent pathway for assembly of unusual alkylmalonyl-CoA polyketide synthase extender units

Type I modular polyketide synthases assemble diverse bioactive natural products. Such multienzymes typically use malonyl and methylmalonyl-CoA building blocks for polyketide chain assembly. However, in several cases more exotic alkylmalonyl-CoA extender units are also known to be incorporated. In all examples studied to date, such unusual extender units are biosynthesized via reductive carboxyl...

متن کامل

Hydroxymalonyl-acyl carrier protein (ACP) and aminomalonyl-ACP are two additional type I polyketide synthase extender units.

Combinatorial biosynthesis of type I polyketide synthases is a promising approach for the generation of new structural derivatives of polyketide-containing natural products. A target of this approach has been to change the extender units incorporated into a polyketide backbone to alter the structure and activity of the natural product. One limitation to these efforts is that only four extender ...

متن کامل

SEARCHPKS: a program for detection and analysis of polyketide synthase domains

SEARCHPKS is a software for detection and analysis of polyketide synthase (PKS) domains in a polypeptide sequence. Modular polyketide synthases are unusually large multi-enzymatic multi-domain megasynthases, which are involved in the biosynthesis of pharmaceutically important natural products using an assembly-line mechanism. This program facilitates easy identification of various PKS domains a...

متن کامل

Acyl-CoA subunit selectivity in the pikromycin polyketide synthase PikAIV: steady-state kinetics and active-site occupancy analysis by FTICR-MS.

Polyketide natural products generated by type I modular polyketide synthases (PKSs) are vital components in our drug repertoire. To reprogram these biosynthetic assembly lines, we must first understand the steps that occur within the modular "black boxes." Herein, key steps of acyl-CoA extender unit selection are explored by in vitro biochemical analysis of the PikAIV PKS model system. Two comp...

متن کامل

The stereochemistry of complex polyketide biosynthesis by modular polyketide synthases.

Polyketides are a diverse class of medically important natural products whose biosynthesis is catalysed by polyketide synthases (PKSs), in a fashion highly analogous to fatty acid biosynthesis. In modular PKSs, the polyketide chain is assembled by the successive condensation of activated carboxylic acid-derived units, where chain extension occurs with the intermediates remaining covalently boun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 11 27  شماره 

صفحات  -

تاریخ انتشار 2013